Keywords

Adomian Decomposition Method, fluid dynamics, boundary layer, differential equations

Abstract

Since its introduction in the 1980's, the Adomian Decomposition Method (ADM) has proven to be an efficient and reliable method for solving many types of problems. Originally developed to solve nonlinear functional equations, the ADM has since been used for a wide range of equation types (like boundary value problems, integral equations, equations arising in flow of incompressible and compressible fluids etc...). This work is devoted to an evaluation of the effectiveness of this method when used for fluid dynamic applications. In particular, the ADM has been applied to the Blasius equation, the Falkner-Skan equation, and the Orr-Sommerfeld equation. This study is divided into five Chapters and an Appendix. The first chapter is devoted to an introduction of the Adomian Decomposition method (ADM) with simple illustrations. The Second Chapter is devoted to the application of the ADM to generalized Blasius Equation and our result is compared to other published results when the parameter values are appropriately set. Chapter 3 presents the solution generated for the Falkner-Skan equation. Finally, the Orr-Sommerfeld equation is dealt with in the fourth Chapter. Chapter 5 is devoted to the findings and recommendations based on this study. The Appendix contains details of the solutions considered as well as an alternate solution for the generalized Blasius Equation using Bender's delta-perturbation method.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2007

Semester

Summer

Advisor

Mohapatra, Ram N.

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Mathematics

Degree Program

Mathematics

Format

application/pdf

Identifier

CFE0001735

URL

http://purl.fcla.edu/fcla/etd/CFE0001735

Language

English

Release Date

September 2007

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Included in

Mathematics Commons

Share

COinS