Keywords
Software Engineering, Software Quality, Software Metrics, Bayesian Belief Networks
Abstract
Software practitioners lack a consistent approach to assessing and predicting quality within their products. This research proposes a software quality model that accounts for the influences of development team skill/experience, process maturity, and problem complexity throughout the software engineering life cycle. The model is structured using Bayesian Belief Networks and, unlike previous efforts, uses widely-accepted software engineering standards and in-use industry techniques to quantify the indicators and measures of software quality. Data from 28 software engineering projects was acquired for this study, and was used for validation and comparison of the presented software quality models. Three Bayesian model structures are explored and the structure with the highest performance in terms of accuracy of fit and predictive validity is reported. In addition, the Bayesian Belief Networks are compared to both Least Squares Regression and Neural Networks in order to identify the technique is best suited to modeling software product quality. The results indicate that Bayesian Belief Networks outperform both Least Squares Regression and Neural Networks in terms of producing modeled software quality variables that fit the distribution of actual software quality values, and in accurately forecasting 25 different indicators of software quality. Between the Bayesian model structures, the simplest structure, which relates software quality variables to their correlated causal factors, was found to be the most effective in modeling software quality. In addition, the results reveal that the collective skill and experience of the development team, over process maturity or problem complexity, has the most significant impact on the quality of software products.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2006
Semester
Fall
Advisor
Schiavone, Guy
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computer Science
Degree Program
Computer Engineering
Format
application/pdf
Identifier
CFE0001367
URL
http://purl.fcla.edu/fcla/etd/CFE0001367
Language
English
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Beaver, Justin, "A Life Cycle Software Quality Model Using Bayesian Belief Networks" (2006). Electronic Theses and Dissertations. 1027.
https://stars.library.ucf.edu/etd/1027