Abstract
Ant Colony Optimization (ACO) belongs to a class of biologically-motivated approaches to computing that includes such metaheuristics as artificial neural networks, evolutionary algorithms, and artificial immune systems, among others. Emulating to varying degrees the particular biological phenomena from which their inspiration is drawn, these alternative computational systems have succeeded in finding solutions to complex problems that had heretofore eluded more traditional techniques. Often, the resulting algorithm bears little resemblance to its biological progenitor, evolving instead into a mathematical abstraction of a singularly useful quality of the phenomenon. In such cases, these abstract computational models may be termed biological metaphors. Mindful that a fine line separates metaphor from distortion, this paper outlines an attempt to better understand the potential consequences an insufficient understanding of the underlying biological phenomenon may have on its transformation into mathematical metaphor. To that end, the author independently develops a rudimentary ACO, remaining as faithful as possible to the behavioral qualities of an ant colony. Subsequently, the performance of this new ACO is compared with that of a more established ACO in three categories: (1) the hybridization of evolutionary computing and ACO, (2) the efficacy of daemon actions, and (3) theoretical properties and convergence proofs. Ant Colony Optimization (ACO) belongs to a class of biologically-motivated approaches to computing that includes such metaheuristics as artificial neural networks, evolutionary algorithms, and artificial immune systems, among others. Emulating to varying degrees the particular biological phenomena from which their inspiration is drawn, these alternative computational systems have succeeded in finding solutions to complex problems that had heretofore eluded more traditional techniques. Often, the resulting algorithm bears little resemblance to its biological progenitor, evolving instead into a mathematical abstraction of a singularly useful quality of the phenomenon. In such cases, these abstract computational models may be termed biological metaphors. Mindful that a fine line separates metaphor from distortion, this paper outlines an attempt to better understand the potential consequences an insufficient understanding of the underlying biological phenomenon may have on its transformation into mathematical metaphor. To that end, the author independently develops a rudimentary ACO, remaining as faithful as possible to the behavioral qualities of an ant colony. Subsequently, the performance of this new ACO is compared with that of a more established ACO in three categories: (1) the hybridization of evolutionary computing and ACO, (2) the efficacy of daemon actions, and (3) theoretical properties and convergence proofs.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2006
Semester
Summer
Degree
Master of Science (M.S.)
College
College of Sciences
Department
Mathematical Science
Format
application/pdf
Identifier
CFE0001192
URL
http://purl.fcla.edu/fcla/etd/CFE0001192
Language
English
Release Date
October 2018
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Becker, Matthew, "A Comparative Study Of Ant Colony Optimization" (2006). Electronic Theses and Dissertations. 6148.
https://stars.library.ucf.edu/etd/6148