Keywords
Hadoop systems, parallel data analysis, high performance computing
Abstract
To facilitate big data processing, many dedicated data-intensive storage systems such as Google File System(GFS), Hadoop Distributed File System(HDFS) and Quantcast File System(QFS) have been developed. Currently, the Hadoop Distributed File System(HDFS) [20] is the state-of-art and most popular open-source distributed file system for big data processing. It is widely deployed as the bedrock for many big data processing systems/frameworks, such as the script-based pig system, MPI-based parallel programs, graph processing systems and scala/java-based Spark frameworks. These systems/applications employ parallel processes/executors to speed up data processing within scale-out clusters. Job or task schedulers in parallel big data applications such as mpiBLAST and ParaView can maximize the usage of computing resources such as memory and CPU by tracking resource consumption/availability for task assignment. However, since these schedulers do not take the distributed I/O resources and global data distribution into consideration, the data requests from parallel processes/executors in big data processing will unfortunately be served in an imbalanced fashion on the distributed storage servers. These imbalanced access patterns among storage nodes are caused because a). unlike conventional parallel file system using striping policies to evenly distribute data among storage nodes, data-intensive file systems such as HDFS store each data unit, referred to as chunk or block file, with several copies based on a relative random policy, which can result in an uneven data distribution among storage nodes; b). based on the data retrieval policy in HDFS, the more data a storage node contains, the higher the probability that the storage node could be selected to serve the data. Therefore, on the nodes serving multiple chunk files, the data requests from different processes/executors will compete for shared resources such as hard disk head and network bandwidth. Because of this, the makespan of the entire program could be significantly prolonged and the overall I/O performance will degrade. The first part of my dissertation seeks to address aspects of these problems by creating an I/O middleware system and designing matching-based algorithms to optimize data access in parallel big data processing. To address the problem of remote data movement, we develop an I/O middleware system, called SLAM, which allows MPI-based analysis and visualization programs to benefit from locality read, i.e, each MPI process can access its required data from a local or nearby storage node. This can greatly improve the execution performance by reducing the amount of data movement over network. Furthermore, to address the problem of imbalanced data access, we propose a method called Opass, which models the data read requests that are issued by parallel applications to cluster nodes as a graph data structure where edges weights encode the demands of load capacity. We then employ matching-based algorithms to map processes to data to achieve data access in a balanced fashion. The final part of my dissertation focuses on optimizing sub-dataset analyses in parallel big data processing. Our proposed methods can benefit different analysis applications with various computational requirements and the experiments on different cluster testbeds show their applicability and scalability.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2015
Semester
Fall
Advisor
Wang, Jun
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computer Engineering
Degree Program
Computer Engineering
Format
application/pdf
Identifier
CFE0006021
URL
http://purl.fcla.edu/fcla/etd/CFE0006021
Language
English
Release Date
December 2015
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Yin, Jiangling, "Research on High-performance and Scalable Data Access in Parallel Big Data Computing" (2015). Electronic Theses and Dissertations. 1417.
https://stars.library.ucf.edu/etd/1417