Keywords
Compressive sensing, difference images, motion detection, surveillance
Abstract
In many surveillance scenarios, one concern that arises is how to construct an imager that is capable of capturing the scene with high fidelity. This could be problematic for two reasons: first, the optics and electronics in the camera may have difficulty in dealing with so much information; secondly, bandwidth constraints, may pose difficulty in transmitting information from the imager to the user efficiently for reconstruction or realization. In this thesis, we will discuss a mathematical framework that is capable of skirting the two aforementioned issues. This framework is rooted in a technique commonly referred to as compressive sensing. We will explore two of the seminal works in compressive sensing and will present the key theorems and definitions from these two papers. We will then survey three different surveillance scenarios and their respective compressive sensing solutions. The original contribution of this thesis is the development of a distributed compressive sensing model.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2012
Semester
Spring
Advisor
Mohapatra, Ram N.
Degree
Master of Science (M.S.)
College
College of Sciences
Department
Mathematics
Degree Program
Mathematical Science
Format
application/pdf
Identifier
CFE0004317
URL
http://purl.fcla.edu/fcla/etd/CFE0004317
Language
English
Release Date
May 2012
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Sciences, Sciences -- Dissertations, Academic
STARS Citation
Huff, Christopher, "Applications Of Compressive Sensing To Surveillance Problems" (2012). Electronic Theses and Dissertations. 2140.
https://stars.library.ucf.edu/etd/2140