Keywords
Coagulation, surface water, drinking water, ferric chloride, ferric sulfate, aluminum sulfate, polyaluminum chloride, aluminum chlorohydrate, dissolved organic carbon, turbidity, color, jar testing, conventional treatment, thms, sludge settling
Abstract
In this research, five different coagulants were evaluated to determine their effectiveness at removing turbidity, color and dissolved organic carbon (DOC) from a surface water in Sarasota County, Florida. Bench-scale jar tests that simulated conventional coagulation, flocculation, and sedimentation processes were used. Iron-based coagulants (ferric chloride and ferric sulfate) and aluminum-based coagulants (aluminum sulfate, polyaluminum chloride (PACl) and aluminum chlorohydrate (ACH)) were used to treat a highly organic surface water supply (DOC ranging between 10 and 30 mg/L), known as the Cow Pen Slough, located within central Sarasota County, Florida. Isopleths depicting DOC and color removal efficiencies as a function of both pH and coagulant dose were developed and evaluated. Ferric chloride and ACH were observed to obtain the highest DOC (85% and 70%, respectively) and color (98% and 97%, respectively) removals at the lowest dose concentrations (120 mg/L and 100 mg/L, respectively). Ferric sulfate was effective at DOC removal but required a higher concentration of coagulant and was the least effective coagulant at removing color. The traditional iron-based coagulants and alum had low turbidity removals and they were often observed to add turbidity to the water. PACl and ACH had similar percent removals for color and turbidity achieving consistent percent removals of 95% and 45%, respectively, but PACl was less effective than ACH at removing organics. Sludge settling curves, dose-sludge production ratios, and settling velocities were determined at optimum DOC removal conditions for each coagulant. Ferric chloride was found to have the highest sludge settling rate but also produced the largest sludge quantities. Total trihalomethane formation potential (THMFP) was measured iv for the water treated with ferric chloride and ACH. As with DOC removal, ferric chloride yielded a higher percent reduction with respect to THMFP.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2012
Semester
Fall
Advisor
Duranceau, Steven
Degree
Master of Science in Environmental Engineering (M.S.Env.E.)
College
College of Engineering and Computer Science
Department
Civil, Environmental, and Construction Engineering
Degree Program
Environmental Engineering
Format
application/pdf
Identifier
CFE0004621
URL
http://purl.fcla.edu/fcla/etd/CFE0004621
Language
English
Release Date
December 2012
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Yonge, David, "A Comparison Of Aluminum And Iron-based Coagulants For Treatment Of Surface Water In Sarasota County, Florida" (2012). Electronic Theses and Dissertations. 2435.
https://stars.library.ucf.edu/etd/2435