Keywords

Electrospray, nanomanufacturing, gpu simulation, film deposition, quadrupole focusing, atomization

Abstract

Electrospray is an atomization method subject to intense study recently due to its monodispersity and the wide size range of droplets it can produce, from nanometers to hundreds of micrometers. This thesis focuses on the numerical and theoretical modeling of the interaction of charged droplets from the single and multiplexed electrospray. We studied two typical scenarios: large area film depositions using multiplexed electrospray and fine pattern printings assisted by linear electrostatic quadrupole focusing. Due to the high computation power requirement in the unsteady n-body problem, graphical processing unit (GPU) which delivers 10 Tera flops in computation power is used to dramatically speed up the numerical simulation both efficiently and with low cost. For large area film deposition, both the spray profile and deposition number density are studied for different arrangements of electrospray and electrodes. Multiplexed electrospray with hexagonal nozzle configuration can not give us uniform deposition though it has the highest packing density. Uniform film deposition with variation < 5% in thickness was observed with the linear nozzle configuration combined with relative motion between ES source and deposition substrate. For fine pattern printing, linear quadrupole is used to focus the droplets in the radial direction while maintaining a constant driving field at the axial direction. Simulation shows that the linear quadrupole can focus the droplets to a resolution of a few nanometers quickly when the interdroplet separation is larger than a certain value. Resolution began to deteriorate drastically when the inter-droplet separation is smaller than that value. This study will shed light on using electrospray as a scalable nanomanufacturing approach.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2012

Semester

Summer

Advisor

Deng, Weiwei

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering; Thermofluids

Format

application/pdf

Identifier

CFE0004463

URL

http://purl.fcla.edu/fcla/etd/CFE0004463

Language

English

Release Date

August 2013

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS