Keywords

Dielectric materials, gate insulator, fabrication of mosfet

Abstract

The scaling of semiconductor transistors has led to a decrease in thickness of the silicon dioxide layer used as gate dielectric. The thickness of the silicon dioxide layer is reduced to increase the gate capacitance, thus increasing the drain current. If the thickness of the gate dielectric decreases below 2nm, the leakage current due to the tunneling increases drastically. Hence it is necessary to replace the gate dielectric, silicon dioxide, with a physically thicker oxide layer of high-k materials like Hafnium oxide and Titanium oxide. High-k dielectric materials allow the capacitance to increase without a huge leakage current. Hafnium oxide and Titanium oxide films are deposited by reactive magnetron sputtering from Hafnium and Titanium targets respectively. These oxide layers are used to create metal-insulator-metal (MIM) structures using aluminum as the top and bottom electrodes. The films are deposited at various O2/Ar gas flow ratios, substrate temperatures, and process pressures. After attaining an exact recipe for these oxide layers that exhibit the desired parameters, MOS capacitors are fabricated with n-Si and p-Si substrates having aluminum electrodes at the top and bottom of each. Comparing the parameters of Hafnium oxide- and Titanium oxide- based MOS capacitors, MOSFET devices are designed with Hafnium oxide as gate dielectric.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2014

Semester

Spring

Advisor

Sundaram, Kalpathy B.

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computing

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0005226

URL

http://purl.fcla.edu/fcla/etd/CFE0005226

Language

English

Release Date

May 2014

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic

Share

COinS