Abstract
One of the most fundamental goals of attosecond science is to observe and to control the dynamic evolutions of electrons in matter. The attosecond transient absorption spectroscopy is a powerful tool to utilize attosecond pulse to measure electron dynamics in quantum systems directly. In this work, isolated single attosecond pulses are used to probe electron dynamics in atoms and to study dynamics in hydrogen molecules using the attosecond transient absorption spectroscopy technique. The target atom/molecule is first pumped to excited states and then probed by a subsequent attosecond extreme ultraviolet (XUV) pulse or by a near infrared (NIR) laser pulse. By measuring the absorbed attosecond XUV pulse spectrum, the ultrafast electron correlation dynamics can be studied in real time. The quantum processes that can be studied using the attosecond transient absorption spectroscopy include the AC stark shift, multi-photon absorption, intermediate states of atoms, autoionizing states, and transitions of vibrational states in molecules. In all experiments, the absorption changes as a function of the time delay between the attosecond XUV probe pulse and the dressing NIR laser pulse, on a time scale of sub-cycle laser period, which reveals attosecond electron dynamics. These experiments demonstrate that the attosecond transient absorption spectroscopy can be performed to study and control electronic and nuclear dynamics in quantum systems with high temporal and spectral resolution, and it opens door for the study of electron dynamics in large molecules and other more complex systems.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2015
Semester
Fall
Advisor
Chang, Zenghu
Degree
Doctor of Philosophy (Ph.D.)
College
College of Sciences
Department
Physics
Degree Program
Physics
Format
application/pdf
Identifier
CFE0006284
URL
http://purl.fcla.edu/fcla/etd/CFE0006284
Language
English
Release Date
6-15-2017
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Cheng, Yan, "Attosecond Transient Absorption Spectroscopy of Atoms and Molecules" (2015). Electronic Theses and Dissertations. 5151.
https://stars.library.ucf.edu/etd/5151