Abstract
Mercury (Hg) is a well-known hazardous environmental contaminant existing in several forms, but all are toxic to human in one way or the others. Since Hg usually settles into water polluting the environment and accumulating in living organisms, it is crucial to monitor Hg levels in the aquatic ecosystem. Although there are many well established techniques currently used to detect Hg, most of them require elaborate and time-consuming sample preparation and pre-concentration procedures, as well as costly and bulky equipment that limit their practical application in the field. In order to overcome the existent limitations in Hg determination methods, Hernandez and co-workers proposed the first surface Plasmon resonance (SPR) – based Hg sensor using gold nanorods (AuNRs) that offers high sensitivity and selectivity, attributed to the strong affinity between Au and Hg. In this dissertation, I first present my contribution to the understanding of the effect of size and aspect ratio of AuNRs on the limit of detection (LOD) and the dynamic range (DR) of the SPR-based Hg sensor using the qualitative model. In this part I demonstrate how both sensitivity and DR can be improved simultaneously via a modified wet chemistry procedure. Then, I show our approach towards the immobilization of AuNRs silane coated glass slides to expand the application of the SPR-based Hg sensor to stream-flow. Finally, I present the design and fabrication of the first real prototype of the SPR-based Hg sensor, and its application in stream-flow detection and speciation of mercury in the environment. The outcomes of my research have resulted in an innovative real-time portable Hg sensor apparatus with the desired high sensitivity, selectivity and DR to be used in stream-flow applications in Oak Ridge National Labs sites.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2015
Semester
Fall
Advisor
Hernandez, Florencio
Degree
Doctor of Philosophy (Ph.D.)
College
College of Sciences
Department
Chemistry
Degree Program
Chemistry
Format
application/pdf
Identifier
CFE0006283
URL
http://purl.fcla.edu/fcla/etd/CFE0006283
Language
English
Release Date
6-15-2021
Length of Campus-only Access
5 years
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Chemnasiri, Warinya, "Development of a nano-sensing approach and a portable prototype for real-time detection and quantification of free mercury in stream-flow: combining science and engineering in pro of the environment" (2015). Electronic Theses and Dissertations. 5158.
https://stars.library.ucf.edu/etd/5158