Abstract

Data storage is one of the important and often critical parts of the computing system in terms of performance, cost, reliability, and energy. Numerous new memory technologies, such as NAND flash, phase change memory (PCM), magnetic RAM (STT-RAM) and Memristor, have emerged recently. Many of them have already entered the production system. Traditional storage optimization and caching algorithms are far from optimal because storage I/Os do not show simple locality. To provide optimal storage we need accurate predictions of I/O behavior. However, the workloads are increasingly dynamic and diverse, making the long and short time I/O prediction challenge. Because of the evolution of the storage technologies and the increasing diversity of workloads, the storage software is becoming more and more complex. For example, Flash Translation Layer (FTL) is added for NAND-flash based Solid State Disks (NAND-SSDs). However, it introduces overhead such as address translation delay and garbage collection costs. There are many recent studies aim to address the overhead. Unfortunately, there is no one-size-fits-all solution due to the variety of workloads. Despite rapidly evolving in storage technologies, the increasing heterogeneity and diversity in machines and workloads coupled with the continued data explosion exacerbate the gap between computing and storage speeds. In this dissertation, we improve the data storage performance from both top-down and bottom-up approach. First, we will investigate exposing the storage level parallelism so that applications can avoid I/O contentions and workloads skew when scheduling the jobs. Second, we will study how architecture aware task scheduling can improve the performance of the application when PCM based NVRAM are equipped. Third, we will develop an I/O correlation aware flash translation layer for NAND-flash based Solid State Disks. Fourth, we will build a DRAM-based correlation aware FTL emulator and study the performance in various filesystems.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Summer

Advisor

Wang, Jun

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Engineering

Degree Program

Computer Engineering

Format

application/pdf

Identifier

CFE0007160

URL

http://purl.fcla.edu/fcla/etd/CFE0007273

Language

English

Release Date

August 2018

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS