Abstract

Gold nanoparticles (AuNPs) have unique optical and chemical properties. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement. The combined use of AuNPs and DLS has led to a novel analytical assay technology called D2Dx (from diameter to diagnostics). Herein, my dissertation highlights the extended use of D2Dx for biomolecule detection and analysis. Under this general theme, Chapter 1 provides some background information of AuNPs, DLS, the principle of D2Dx technique and its potential applications. Chapter 2 summarizes a study on the effect of AuNP concentrations and laser power on the hydrodynamic size measurement of AuNPs by DLS. This study demonstrated the multiple scattering effect on DLS analysis, and how to use the exceptionally high sensitivity of DLS in AuNP aggregate detection for bioassay design and development. Chapter 3 explores a cooperative interaction between AuNP and certain proteins in blood serum that are key to the immune system, leading to a novel diagnostic tool that can conveniently monitor the humoral immunity development from neonates to adults and detect active infections in animals. Chapter 4 reports an application of D2Dx technique for acute viral infection detection based on the active immune responses elicited from mouse models infected with influenza virus. Chapter 5 describes another application of D2Dx for prostate cancer detection. The D2Dx assay identifies prostate cancer patients from non-cancer controls with improved specificity and sensitivity than PSA test. Chapter 6 demonstrates the use of AuNPs and DLS for hydrodynamic size measurement of protein disulfide isomerase with two different conformations. Chapter 7 investigates the concentration-dependent self-assembling behavior of ribostamycin through its interaction with AuNPs in aqueous solution. Overall, this dissertation established several lines of applications of using AuNPs and DLS for biomolecular research and in vitro diagnostics.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Fall

Advisor

Huo, Qun

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Chemistry

Degree Program

Chemistry

Format

application/pdf

Identifier

CFE0007385

URL

http://purl.fcla.edu/fcla/etd/CFE0007385

Language

English

Release Date

December 2023

Length of Campus-only Access

5 years

Access Status

Doctoral Dissertation (Open Access)

Included in

Chemistry Commons

Share

COinS