Abstract

Acoustic instabilities remain a key design concern faced in the development of liquid rocket engines. The interaction between the acoustic modes and the occurring combustion reactions can be detrimental to the engine. The fluctuating pressure waves resulting from the flame oscillations in the system can potentially lead to engine failure. For this reason, research in acoustic instabilities and methods to minimize the influences on the engine, has maintain interest in the aerospace community. The scope of this study was to design, optimize and characterize acoustic behaviors of a scaled rocket combustion chamber simulating acoustic pressure waves. Tangential and longitudinal acoustic waves of the system were extracted and validated through analytical and computational fluids dynamics models. The results of this study will assist with the process of extracting dominant oscillation frequencies of a system essential in the design of acoustic suppression devices for attenuation of critical frequencies.

Graduation Date

2018

Semester

Fall

Advisor

Ahmed, Kareem

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Aerospace Engineering; Thermofluid Aerodynamic Systems Track

Format

application/pdf

Identifier

CFE0007354

URL

http://purl.fcla.edu/fcla/etd/CFE0007354

Language

English

Release Date

December 2023

Length of Campus-only Access

5 years

Access Status

Masters Thesis (Campus-only Access)

Share

COinS