•  
  •  
 

Mentor

Dr. Marianna Pensky

Abstract

One can apply transformations of random variables to conduct inference for multiple distributions in a few simple steps. These methods are used routinely in maximum likelihood estimation but are rarely applied in other statistical procedures. In this project, transformations of variables were explored and applied to derivations of the best unbiased estimators, Bayesian estimators, construction of various kinds of priors, estimation and inference in the stress-strength problem. First, general results were obtained on the application of transformations of random variables to the derivation of numerous statistical procedures. Second, common distributions and the relationships between them were listed in a table. Third, examples of applications of our theory were provided; i.e., papers published in various statistical journals were examined and the same results were obtained in just a few lines with almost no effort. The value of this project lies in the fact that undergraduate level statistics can yield such powerful results.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.